Blending Geoscience Research with Machine Learning

Who we Are

We are the John Lab, a research group led by Professor Cédric John and hosted in the Digital Environment Research Institute (DERI) at Queen Mary University of London. At DERI, Professor John leads the Data Science for the Environment and Sustainability Research Platform, one of four key research directions for the institute. Before joining DERI, the group was based for nearly 16 years in the Department of Earth Science and Engineering at Imperial College London.

Our research approach blends machine learning and AI with cutting edge field and experimental methods in Earth and Planetary Sciences. The Digital Environment Research Institute is the centre of digital, data science, and AI research at Queen Mary and it underpins the university’s vision for its research Strategy 2030. For us, DERI is the perfect home for an interdisciplinary team working on scientific machine learning applied to environmental and Earth Science problems.

DERI and Queen Mary University of London are affiliated with the Alan Turing Institute.

Testimonials

Hear what former members of the lab have to say about their time with us.

Annabel Dale (PhD Student, 2011-2015)

Annabel Dale (PhD Student, 2011-2015)

“Cedric was great to work with as a supervisor for my PhD and afterwards whilst co-supervising a PhD student. His enthusiasm and good instinct for interesting science, means that working in the John lab is an excellent place to learn and develop research skills.”
John MacDonald (Postdoc, 2013-2015)

John MacDonald (Postdoc, 2013-2015)

“I had a great time working in the John Lab. Cedric was a fantastic mentor to me as a postdoc, and he really helped me in getting to my current career stage as a Senior Lecturer in Earth Sciences at the University of Glasgow.”
Marta Marchegiano(Postdoc, 2019-2021)

Marta Marchegiano(Postdoc, 2019-2021)

“I did my first postdoc at John lab where I learnt about the clumped isotope technique. Cédric is a very thoughtful and knowledgeable supervisor, he always took the time to teaching me about this exciting thermometer. Thanks to his enthusiasm I became very passionate about carbonate geochemistry and this experience was an important stepping stone for my future career. “
Adhipa Herlambang (PhD Student, 2018-2021)

Adhipa Herlambang (PhD Student, 2018-2021)

“It was a great honor to be part of the amazing John Lab. Participating in the clumped isotope lab during my Ph.D. was an immensely satisfying experience in many ways. It allowed me to develop a series of learning experiences in a very friendly atmosphere.”
Sarah Robinson (PhD Student, 2019-2022)

Sarah Robinson (PhD Student, 2019-2022)

“Over the course of my time with John’s Lab I have benefited from a strong and diverse group of peers. I have gained knowledge in not only my own field, but the fields of my peers through discussions in bi-weekly lab meetings. I will miss working within John’s lab as I move onto my next chapter.”
Qi Adlan (PhD Student, 2019-2022)

Qi Adlan (PhD Student, 2019-2022)

“Working in John Lab makes me feel engaged and valued. Cedric is very knowledgeable and kind — he helped me reach my full potential to become an independent researcher.”
Niranjana Sundararajan (MSc Student, 2022)

Niranjana Sundararajan (MSc Student, 2022)

“Working on my MSc thesis with Cedric as my supervisor was the most interesting, productive and challenging part of my academic experience at Imperial. Cedric is an excellent supervisor-  providing constant support, direction and the encouragement necessary to reach research goals.”
Tobias Kluge (Postdoc, 2012-2015)

Tobias Kluge (Postdoc, 2012-2015)

Research topics in the John lab are at the cutting edge of the respective field and provided me a fascinating insight in current scientific developments. They were a strong motivation for my own research. A vibrant and motivated research group inspired exciting project ideas and enabled thorough scientific discussions.”

research Highlights

We have two main research themes: Applied Artificial Intelligence for Earth and Space Sciences (we call it Earth-Centric AI) and Carbonate Research. You can also find about our publications and the software and data stemming from our research.

AI Research

Our group applies data-centric machine learning techniques to Earth and planetary sciences, leading to innovative approaches for analyzing and interpreting data in these fields.

Carbonate Research

Our research in carbonates focuses on the processes involved in their formation and alteration, and how these processes impact the geochemistry and stratigraphy of carbonate rocks.

Publications

Our group has published over 100 peer-reviewed papers in a variety of fields, including clumped isotopes, carbonate diagenesis, climate change, stratigraphy, AI and machine learning.

Software and Data

Our research has led to the development of free software tools that have been widely used by researchers in our fields. These tools have made it easier to analyze and interpret data..

Spotlight on our Papers:

Relationship between karstification and burial dolomitization in Permian platform carbonates (Lower Khuff—Oman)
Relationship between karstification and burial dolomitization in Permian platform carbonates (Lower Khuff—Oman)

Large breccia fabrics associated with karst constitute an important structure in massive limestone successions. The dimensions and shapes of breccia structures are controlled by the initial fracture pattern of the limestone and preferential pathways of the karstifying fluids, but subsequently…

Rapid sedimentation, overpressure, and focused fluid flow, Gulf of Mexico continental margin
Rapid sedimentation, overpressure, and focused fluid flow, Gulf of Mexico continental margin

Expedition 308 of the Integrated Ocean Drilling Program (IODP) was the first phase of a two-component project dedicated to studying overpressure and fluid flow on the continental slope of the Gulf of Mexico. We examined how sedimentation, overpressure, fluid flow,…

Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California—The Monterey hypothesis revisited
Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California—The Monterey hypothesis revisited

The middle part of the Miocene Monterey Formation at Naples Beach, west of Santa Barbara, California, is predominantly composed of organic-rich mudstone interstratified with phosphatic laminae. Minor lithologies include volcanic ash, dolomite, porcelanite and chert, and condensed phosphatic beds. Sediments…

From early contraction to post-folding fluid evolution in the frontal part of the Bóixols thrust sheet (southern Pyrenees) as revealed by the texture and geochemistry of …
From early contraction to post-folding fluid evolution in the frontal part of the Bóixols thrust sheet (southern Pyrenees) as revealed by the texture and geochemistry of …

Structural, petrological and geochemical (δ13C, δ18O, clumped isotopes, 87Sr/86Sr and ICP-MS) analyses of fracture-related calcite cements and host rocks are used to establish a fluid-flow evolution model for the frontal part of the Bóixols thrust sheet (Southern Pyrenees). Five fracture…

Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks
Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

Magnesium carbonate minerals produced by reaction of H2O–CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite;…

Mental health in the field
Mental health in the field

Field work is an important and valued part of geoscience research, but can also serve as a source of stress. Careful planning can help support the mental health and wellness of participants at all career stages.

From hydroplastic to brittle deformation: controls on fluid flow in fold and thrust belts. Insights from the Lower Pedraforca thrust sheet (SE Pyrenees)
From hydroplastic to brittle deformation: controls on fluid flow in fold and thrust belts. Insights from the Lower Pedraforca thrust sheet (SE Pyrenees)

We present a multidisciplinary study to decipher the controls of deformation on fluid flow regime in fold and thrust belts using the Lower Pedraforca thrust sheet in the SE Pyrenees as an example. We integrate field-based and petrographic observations and…

Multiple fluid flow events from salt‐related rifting to basin inversion (Upper Pedraforca thrust sheet, SE Pyrenees)
Multiple fluid flow events from salt‐related rifting to basin inversion (Upper Pedraforca thrust sheet, SE Pyrenees)

The field of clumped isotope paleothermometry is over a decade old, but the influence of precipitation rate on the fractionation of clumped isotopes between natural carbonates and their environmental solutions remains unclear. Here we apply two different proxies, carbonate clumped…

North American continental margin records of the Paleocene‐Eocene thermal maximum: Implications for global carbon and hydrological cycling
North American continental margin records of the Paleocene‐Eocene thermal maximum: Implications for global carbon and hydrological cycling

The impacts of the Paleocene‐Eocene thermal maximum (PETM) (∼55 Ma), one of the most rapid and extreme warming events in Earth history, are well characterized in open marine and terrestrial environments but are less so on continental margins, a major…

Physicochemical Conditions of the Devonian-Jurassic Continental Deep Biosphere Tracked by Carbonate Clumped Isotope Temperatures of Granite-Hosted Carbonate Veins
Physicochemical Conditions of the Devonian-Jurassic Continental Deep Biosphere Tracked by Carbonate Clumped Isotope Temperatures of Granite-Hosted Carbonate Veins

Previous studies have shown that microorganisms thrive in oligotrophic fracture systems, and metabolisms include consumption and production of methane. In the Laxemar, Götemar, and Forsmark areas of Sweden, ancient microbial activity has previously been demonstrated by large δ13CVPDB variability of carbonate vein…

Determination of the spatial distribution of wetting in the pore networks of rocks
Determination of the spatial distribution of wetting in the pore networks of rocks

The macroscopic movement of subsurface fluids involved in CO2 storage, groundwater, and petroleum engineering applications is controlled by interfacial forces in the pores of rocks. Recent advances in modelling these systems has arisen from approaches simulating flow through a digital…

Significance of fracture-filling rose-like calcite crystal clusters in the SE pyrenees
Significance of fracture-filling rose-like calcite crystal clusters in the SE pyrenees

Fracture-filling rose-like clusters of bladed calcite crystals are found in the northern sector of the Cadí thrust sheet (SE Pyrenees). This unusual calcite crystal morphology has been characterized by using optical and electron microscope, X-ray diffraction, Raman spectroscopy, δ18O, δ13C,…